Building future-proof networks for intelligent transportation systems

September 2018
Table of Contents

Introduction ... 3
Intelligent Transportation Systems .. 4
ITS network requirements .. 5
The Alcatel-Lucent Enterprise ITS solution ... 6
An ITS network that’s ready to roll .. 10
Departments of roads and highways around the world have begun to implement technology solutions to improve the safety of their highways, lessen congestion and manage traffic more efficiently. These Intelligent Transport Systems (ITS) require reliable, secure and scalable networks to link cameras, sensors, signage, signaling and vehicles to remote data centers and operation centers. These networks will be deployed in harsh environments and will pose their own unique challenges to operate, maintain and manage.

In this application note, we present the unique requirements of ITS networks and discuss how Alcatel-Lucent Enterprise products and technologies not only meet today’s ITS requirements, but are designed to grow and scale to meet tomorrow’s as well.

The Alcatel-Lucent Enterprise ITS Solution at a Glance

Our high-capacity IP/Ethernet networks support the most demanding ITS applications today (for example, video monitoring) with an expandable range of configurations ready for tomorrow’s roadside devices and innovative applications.

- Our fan-less, Alcatel-Lucent OmniSwitch® 6865 and 6465 families of hardened Ethernet switches are designed for the conditions experienced in roadside cabinets:
 - Temperatures from -40 to 75°C (-40 to 167°F)
 - Variable AC and DC power conditions
 - Electromagnetic fields, high vibrations, dust/dirt and high humidity

They support:

- Power over Ethernet (PoE) and High Power over Ethernet (HPoE) for reduced cabling requirements
- Optical uplinks for 10 Gb/s backhaul of sensor and video data
- SPB-M (OmniSwitch 6865), standards based, fast convergence protocol delivering secure virtual private networks over a single network infrastructure
- MACsec technology (OmniSwitch 6465) for secure communication over Ethernet links
- Plug-n-play (Intelligent Fabric) support for ease of installation and deployment

We have a range of access, aggregation and core switching products, WLAN portfolio, data center solutions and our network management system that provide an end-to-end ITS solution that is cost-effective and operationally efficient.

Introduction

Road transportation is behind the digital technology curve, but it is quickly catching up. Concerns for safety, congestion and more efficient traffic management led to the development of Intelligent Transportation Systems (ITS) in the 1990s. Since then, the requirements and capabilities of ITS have expanded rapidly. From early implementations of variable speed limit (VSL) signs, dynamic message signs (DMS) and e-tolls – to tomorrow’s mesh of sensors, connected vehicles and, eventually self-driving cars – the list of ITS applications is growing daily as vehicular-based transportation systems become the next promising field in the advance of digital technologies.
Wired and wireless networks handle communications for all ITS systems and sub-systems. They link cameras, sensors, signage, signaling and vehicles to remote traffic operations centers where the vast amount of data that is produced by these systems are monitored and acted upon to reduce vehicle congestion, respond to incidents, and otherwise ensure the smooth running of our highways.

Although traditionally serial-based, ITS communications networks are moving (along with the rest of the world) to IP and, in wired networks specifically, to IP/Ethernet. IP/Ethernet supports a wider range of applications, scales to support heavy bandwidth applications, such as video, and works with the communications already in use by drivers, passengers and vehicular systems. Thus, an ITS network based on IP/Ethernet is by definition open to new applications and services in the future, as ITS applications increasingly interact with vehicles and consumers.

Alcatel-Lucent Enterprise has a range of IP/Ethernet products for building out a hardened, scalable and secure IP/Ethernet infrastructure with the capacity and features to handle the most demanding ITS applications. Critically, our network systems are designed to simplify operational complexity, reduce configuration time, and ensure a long lifespan for products deployed in the field – an environment where the labor costs involved in replacing networking gear is many times the cost of the gear itself. In this application note, we look at the role Alcatel-Lucent Enterprise networking can play in your advanced ITS deployment.

Intelligent Transportation Systems

Although initially engineered to help control congestion with technologies such as VSL and DMS signs, ITS systems will play an increasingly critical role as they are integrated with other systems, especially driver assistance systems, vehicle-to-vehicle (V2V) communications and, eventually, self-driving cars. They will require very high levels of reliability, as well as the ability to expand and scale as new applications are deployed.

Advanced transportation management systems (ATMS) are one of the key applications within ITS. In a manner very similar to air traffic control, ATMS systems regulate the flow of vehicles with the goal of lessening or eliminating congestion and, in this way, improving the safety and efficiency of our roads. Sensors are embedded in the surface of the road or mounted on equipment (for example, poles and signs). Cameras are mounted on overpasses and other vantage points. They feed data and video back to a traffic operations center where it is processed and monitored and the resulting decisions are used to manage traffic. In the past decade, digital signage and FM radio were the primary ways to communicate with drivers, while ramp meters and electronic tolls were used to manage traffic flow and volume. In the near future, traffic management decisions will be communicated through in-vehicle advanced traveler information systems (ATIS) working with ATMS.

ATIS and ATMS applications are only part of the many ways in which vehicles and highways are becoming increasingly smart and connected. As both drivers and transport departments come to depend more and more on these systems, the demands for network-based communications reliability will become more stringent. The following examples illustrate some of the mission-critical roles that they will play, as well as some of the conveniences they will enable:

- **Green wave**: The synchronization of traffic signals to create a continuous traffic flow, thus reducing stopping and starting, lowering fuel use and reducing emissions. In some existing systems VSL signage helps optimize speed and regulate traffic flow. In the future, this will be done through ATIS.

- **Cooperative Adaptive Cruise Control (Platooning)**: An application that uses V2V communications to coordinate vehicles using cruise control with the goal of having them move as a coordinated group and thus avoid the inefficiencies of some behavior, such as accordioning.
• **R.E.S.C.U.M.E. (Response, Emergency Staging and Communications, Uniform Management and Evacuation)**: First responder services can leverage the ITS system to more quickly detect and react to emergency incidents, including communications with those involved in the incident, field personnel and operations management. Video monitoring also plays an important role in assessing the situation.

• **Dynamic ridesharing**: Similar to the current Uber-type of application, this would leverage the ATIS in-vehicle system and personal smartphones to match drivers and riders.

• **Smart parking**: This application uses sensors and smartphone-enabled payment systems to predict where parking is likely to be available and even allow drivers to reserve and pay for spaces.

While ITS systems were not designed with semi-autonomous and autonomous vehicles in mind, there is no doubt that many of the applications being considered in this innovative and exciting area will make interactions between the ITS systems and autonomous vehicles possible. Adaptive cruise control, for example, envisions the driver turning over throttle control to the vehicle, as opposed to just setting a fixed speed.

It is not hard to imagine adaptive cruise control working interactively with platooning or green wave ITS applications.

These applications all depend in one way or another on the underlying network, whether wired or wireless. And while some are merely nice to have, others are considered mission-critical for safety reasons. The larger point is that these new applications will put increasing pressure on the underlying network for capacity, security and reliability.

ITS network requirements

As we have seen from a quick sampling of ITS applications, one of the realities facing ITS administrators is that the requirements being placed on their systems will evolve rapidly in the coming decades. Managing this evolution could potentially impose costs far in excess of the original equipment purchases. These highly distributed, outdoor network installations are expensive to service relative to the cost of the network gear itself. Thus, it is critical to invest today in equipment with the capacity and features to meet tomorrow’s needs.

High capacity and scalable IP/Ethernet

The traditional serial-based networks built for signaling and signage are unsuited for most applications we have described. Advanced ITS systems need higher bandwidth capacity in the 1–10 Gb/s range to be able to handle video applications. They must be very scalable and application aware to be able to respond dynamically to rapidly shifting user demands during road incidents, congestion and other high use periods. Both consumer and in-vehicle applications, although using wireless\(^1\) for the last 100–1000 meters will require IP/Ethernet with the ability to support quality of service (QoS) for voice and video, and virtual private networks (VPNs) to handle secure applications.

Power over Ethernet

With the large number of sensors, cameras and other connected devices, power over Ethernet (PoE) will be compulsory on many access switches in order to reduce cabling requirements and simplify installation and maintenance. Also important are emerging standards to provide higher power over Ethernet that will support applications such as heated, pan-tilt-zoom (PTZ) cameras that require up to 60W.

\(^1\) There will be a wide range of wireless technologies adopted. Some ITS functions will be handled directly by cellular networks, especially as we move from LTE to the emerging 5G standard (2020-25), which will seamlessly integrate cellular and Wi-Fi (IEEE 802.11) and have improved handling of bearer-less devices, such as sensors. However, most other wireless technologies will rely on IP/Ethernet transport networks including sensor networks, wireless Mesh/Ad hoc networks, mobile IP, smart antenna and cognitive radio.
Roadside ready

Roadside Ethernet switching will be outdoors and exposed to both extremes of weather, vibrations, and power sags and spikes. It will need to be both ruggedized and have built-in capacity to expand as new applications, sensors and devices are developed and installed. Spanning thousands of miles of highways and roads, access switches will also need to be linked by low-latency optical backbones to span the potentially long distances between nodes.

Deployment and Maintenance

ITS implementations are often deployed as part of larger construction projects and the personnel assigned to install a critical unit, such as a network switch, often have not undergone extensive technical training – thus the need for plug-n-play installation and automated deployment. For ongoing maintenance of such highly distributed networks, it will be important to avoid mobilizing resources, whether contractors or internal resources, and to simplify as much as possible any interactions that roadside maintenance crews need to have with the network when adding, repairing and replacing sensors, signage and cameras. Any network-specific maintenance, such as node configuration, loading of software updates and other operational tasks need to be handled remotely. Given their mission-critical characteristics, many of these applications will as well require self-healing networks with fast recovery.

Data center agility

Modern data center architectures employ server virtualization, which enables the speedy creation of separate processing pools that can be dedicated to individual ITS and other applications as needed. What this means is that if one application becomes overloaded, it doesn’t have to degrade the whole data processing capability. For instance, some resources could be dedicated to processing the information from meshes of sensors and monitoring devices and be unaffected by ATIS and first responder communications that need to be spun up quickly to deal with sudden traffic congestion or emergency incidents. It is important that the networks that serve ITS data centers be flexible and agile in responding to the quickly shifting application loads on the network – what we refer to as application fluent – while providing the automation, security and intelligence required to deliver high-quality services while reducing operation costs.

The Alcatel-Lucent Enterprise ITS solution

As we have seen, intelligent transport systems require reliable, secure and scalable networks to link cameras, sensors, signage, signaling and vehicles to remote data centers and traffic operations centers. These networks will be deployed in harsh environments and will pose their own unique challenges to operate, maintain and administer. In this section we will discuss how Alcatel-Lucent Enterprise products and technologies not only meet today’s ITS requirements, but are designed to grow and scale to meet tomorrow’s as well.

Cost-Effective VPNs with Shortest Path Bridging

Shortest Path Bridging (SPB) is an IEEE standard that natively provides MPLS-like L2/L3 VPN services but is comparatively cheaper and simpler to deploy and maintain. SPB relies on a proven and largely deployed protocol (IS-IS) to build a network topology, calculate shortest paths within the network and distribute service information.

Alcatel-Lucent Enterprise’s Intelligent Fabric technology brings further simplification with plug-n-play and auto-attachment capabilities. Because of this simplicity and automation, an Alcatel-Lucent Enterprise powered SPB-M solution offers very low total cost of ownership (TCO).
Persistent network access

ITS network access includes the need for both wireline and wireless equipment. Alcatel-Lucent OmniSwitch Stackable Gigabit LAN switches provide wireline access, with wireless access provided by a variety of high-performance 802.11ac Wi-Fi access points (APs).

The workhorse of the Alcatel-Lucent Enterprise ITS solution is the OmniSwitch 6865 (OS6865) Ethernet Access switch. This industrial grade, layer 3, Gigabit Ethernet switch is designed to operate reliably in the harsh environments experienced in roadside cabinets. It can operate at wider operating temperatures -40 to 75°C (-40 to 167°F or), variable power conditions (90 – 260 VAC and 20 – 60 VDC), and can withstand electromagnetic fields, high vibrations, dust/dirt and high humidity. It has an optimized feature set for high security, reliability, performance and easy management. Its stackable half-rack form factor (also available as a 19” half-rack model), enabling it to easily squeeze into roadside cabinets where space is at premium. With support for SPB-M, the OS6865 can deliver VPN services and eliminate spanning tree from the network.

This allows, for instance, for expansion of services to a given sector by simply enabling those services at the edge, without requiring configuration changes at the core of the network (see sidebar).

The latest addition to the Alcatel-Lucent Enterprise ITS solution is the OmniSwitch 6465 (OS6465) family of advanced L2 Gigabit Ethernet switches completing the range of hardened switches for IoT and industrial deployments. These switches are designed to operate in extended temperatures, offer higher EMI/EMC tolerance and a flexible range of power input options fulfilling high security, reliability, performance and easy management requirements for outdoor deployments.

MACsec support on OS6465 ports provides secure network access ensuring data confidentiality and integrity within ITS rings. Alarm relay (1 input, 1 output) provides connectivity for external alarms systems. Input alarms would trigger output alarms and/or converted IP alarm.

The OS6865 and OS6465 have gigabit optical backbone connectivity, allowing up to 1/10 gigabit uplinks and support for a variety of optical fiber types including single-mode, multi-mode, short and long-haul optics allowing distances of up to 50 miles.

Both families have PoE support for connecting security cameras, wireless access points and sensors, and HPoE for up to 75/60W support for applications such as heated, pan-tilt-zoom (PTZ) cameras. They offer advanced QoS to support the special demands of video and voice applications, as well as integrated security features for controlling access to the network, policy enforcement and network security attack containment. Operationally, intelligent fabric technology (iFab) supports cost-effective installation and deployment using automated switch setup and configuration.
A resilient and high-performing core

Although ITS planners and architects will be primarily focused on the access network, which links all the sensors, signs, cameras and other roadside devices, these access switches will also need to have larger switches to aggregate their traffic and, at the core of the network, very large switches to ensure that data centers and operation centers provide the seamless visibility and control that ITS managers will require.

There are inherent advantages to all of these network components working closely together. It is especially important for technical staff to have end-to-end visibility and control of all the network resources. Traffic congestion and emergency incidents, for instance, can have a direct spillover effect on the operation of the network. As discussed in relation to data centers, specific ITS applications will have individual needs that require the network to be aware or application-fluent. As well, data analytics can be employed to anticipate problems and issues before they occur.

The network counts on high-performance wire-rate 10 Gigabit Ethernet/40 Gigabit Ethernet/100 Gigabit Ethernet network switches that provide unparalleled port density and switching capacity to grow and scale the network inexpensively. This includes the market-leading OmniSwitch 6860E Stackable LAN Switch for roadside fiber huts, the Alcatel-Lucent OmniSwitch 6900 Stackable Ethernet LAN Switch family, for aggregating the traffic coming from the roadside switches, and the OmniSwitch 9900 Modular LAN Chassis which functions as the high-capacity core of the ITS network solution.
All Alcatel-Lucent Enterprise OmniSwitches have the virtual chassis (VC) feature, which enables multiple switches to be combined and behave as a single fully redundant unit. In many cases, this can replace an expensive chassis, require less space and power, and be delivered at a lower cost. It allows for rapid expansion of the core network, as new sectors of the highway system have ITS capabilities added. The VC provides fast re-convergence if equipment fails, without impacting real-time applications and user experience, such as voice and video. The core products incorporate the award-winning Intelligent Fabric (iFab) technology offering a set of capabilities, including automation techniques, that simplify the design, deployment and operation of the network (see sidebar).

End-to-end network management

The management suite includes all the tools needed to provision, monitor, analyze and troubleshoot the network. The OmniVista 2500 is capable of managing the LAN, WLAN, core, WAN, and data center from a centralized single pane of glass. It is an essential component of ALE iFab technology.

The Alcatel-Lucent Enterprise network analytics technology enables technical staff to analyze the network information in a meaningful manner. The Alcatel-Lucent OmniVista® 2500 Network Management System uses a customizable dashboard to summarize and display the vast information available from the network. From this dashboard, staff can expand the analysis in more detail through multiple graphs and reports. The data collected includes information for the users, devices and applications traversing the network. It also includes network device status, network traffic behavior, warnings and key statistics.

The OmniVista 2500 has the unique ability to offer predictive analysis reports. It analyzes network traffic patterns over a large period of time and uses sophisticated algorithms to predict future behavior. It provides visibility into potential future bottlenecks, enabling proactive planning of the network capacity and expansion. The system can detect abnormal network traffic behavior and alert administrators to network security attacks.

Award winning technology

iFab or Intelligent Fabric makes roadside maintenance of networked devices much simpler with plug-n-play deployment.

iFab attaches itself to wireless access points, servers, sensors and cameras to automatically configure the appropriate connectivity settings. The award-winning iFab technology enables:

- Simpler network design
- Comprehensive interoperability
- Automation of moves, adds and changes
- Remote configuration loads (RCL)
- Self-healing capability, where any component failure, link or node, is detected in real time with automated re-routing of the network traffic
- Network upgrades while in service

The iFab technology includes self-configuration of the network equipment through Auto Fabric:

- Eliminates many manual tasks during the deployment process
- Shortens the time-to-production of the infrastructure
- Reduces the chances of errors in the deployment process.
Data Center Solutions
If we think of the traffic operations center of the ITS system as the eyes and ears, then the network is the nervous system, and the data center, although rarely seen, is the brain. It must analyze the entire sensor and monitoring data of the ITS system rapidly, responding automatically to fluctuating traffic congestion and management issues, and ensuring that ITS operational staff have the latest information at their fingertips.

Data center technology is rapidly evolving. Traditionally, data centers were internally managed, but increasingly the heavy processing tasks are being outsourced to cloud-based providers. In many enterprise networks today, a hybrid private-public model is emerging, with small, private data centers handling day-to-day operations but backed up by public cloud providers to manage overflow and very large but intermittent data processing tasks. The advantage of this model is to minimize the higher costs of fixed data center infrastructure and maximize on-demand, low-cost variable infrastructure. Ideally, processing tasks can move fluidly between different physical locations, as demand requires. However, this puts new demands on the network to respond to these large shifts in the flows of data.

Alcatel-Lucent Enterprise provides a blueprint for ITS traffic operations center network evolution that offers low latency, high density and sustainable design options for the data center. Our innovative data center switching fabric can form a mesh network that enables a range of innovative data center deployment models. These include dedicated virtual data centers, multi-site private clouds or a hybrid cloud environment. In all cases, the network provides the automation, security and QoS required to deliver high quality, agility and reduced costs.

An ITS network that’s ready to roll
There is more excitement every day about the intersection of digital technologies and vehicles. Transportation authorities worldwide recognize the cost to their economies of inefficient road systems and traffic congestion, while the public demands greater safety and convenience. New applications are emerging, vehicles are become increasingly smart and on-board systems are re-defining the user interface. Governments are formulating new policies and standards for vehicle-to-vehicle and autonomous vehicles applications.

To those managing transportation systems, it is an exciting and challenging time. There are new skills to learn, staff to hire and suppliers to on-board. And budgets aren’t getting any bigger. Technologies are changing so quickly that specifying what you need based on today’s specifications means that by the time it is installed it will likely be insufficient for the job.

Alcatel-Lucent Enterprise has a range of solutions for deploying networks that will support ITS applications: From network management and data center solutions to our core and edge switches and – the key product for ITS environments – the hardened Gigabit Ethernet OmniSwitch 6865s and OmniSwitch 6465s. We build our solutions on open standards and interfaces, like IP/Ethernet, so that we are interoperable with other vendors’ equipment and you are ready to handle tomorrow’s applications. We support both PoE and HPoE so that you can reduce your cabling requirements. Our network systems are highly automated and designed to minimize the intervention of technical staff, while achieving high availability, sub-second recovery from failures and integrated security. Network analytics provides assurance that mission-critical applications have the network resources they require, while our comprehensive management system provides end-to-end visibility and facilitates troubleshooting.

All of this adds up to network solutions that leave more room in your capital and operating budgets for the many other important investments you will need to make in equipment, training, testing and deployment of your ITS infrastructure, with the security of knowing that it is a system you can grow in the years ahead.
Alcatel-Lucent Enterprise ITS solution summary

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment hardened Ethernet access for roadside cabinets</td>
<td>The OmniSwitch 6865 Gigabit Ethernet LAN switch is environmentally hardened to withstand a broad range of temperatures from -40 to 75°C (-40 to 167°F), electrical fluctuations (90 – 260 VAC and 20 – 60 VDC), as well as vibrations, electromagnetic fields and high humidity – all in a space-efficient, half-rack design. It supports Shortest Path Bridging (SPB-M) for bridging and routed services and has the port density to support multiple devices and new applications as they emerge. The OmniSwitch 6465 family consists of fully managed, fan-less Gigabit Ethernet switches designed for industrial applications operating at a wider temperature range from -40C to +75C, withstands greater shock, vibrations, surge and EMI/EMC variance. They offer HPoE (60W PoE) providing power to a range of new age devices from PTZ IP cameras or video displays on toll booths and other outdoor installations. Supported MACsec encryption provides a secure network access ensuring data confidentiality and integrity. Alarm relay allows for connecting external alarms such as door open or temperature sensor.</td>
</tr>
<tr>
<td>Evolve existing networks to handle video and new applications supporting IoT, from access to the core</td>
<td>Alcatel-Lucent OmniSwitch 6860E Stackable LAN switch for the network edge (for example, fiber huts). The OmniSwitch 6900 for aggregation and the OmniSwitch 9900 family for the core. Supports up to 10 Gb/s access and 40/100 Gb/s core with full, low latency, wireline performance</td>
</tr>
<tr>
<td>Reduced cabling requirements</td>
<td>Power over Ethernet (PoE) and High Power over Ethernet (HPoE) is available on the OS6865 and OS6465 powering roadside devices up to 75W/60W.</td>
</tr>
<tr>
<td>Plug and play installation of networked roadside devices</td>
<td>Award-winning Intelligent Fabric (iFab) technology</td>
</tr>
<tr>
<td>Ensure network can adapt to shifts in application use and scale to meet extraordinary demand</td>
<td>Application Fluent network technology allows for network resources to be re-allocated to meet changing demands in real time.</td>
</tr>
<tr>
<td>Improve network resilience</td>
<td>SPB-M supports faster convergence times and improves efficiency by allowing traffic to load share across all paths of a mesh network. Redundant power supply units (PSUs). Virtual chassis ISSU</td>
</tr>
<tr>
<td>Automate deployment</td>
<td>iFab, SPB-M and remote configuration download</td>
</tr>
<tr>
<td>Ensure interoperability</td>
<td>IP/Ethernet with iFab and compliance with industry standards</td>
</tr>
<tr>
<td>Manage and secure the network</td>
<td>OmniVista Cirrus Cloud-based Network Management and OmniVista 2500 Network Management</td>
</tr>
</tbody>
</table>